

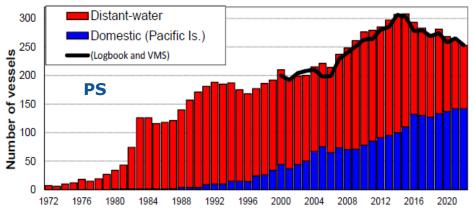
WCPFC20

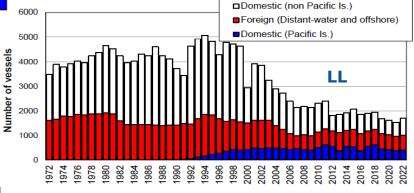
4-8 December 2023

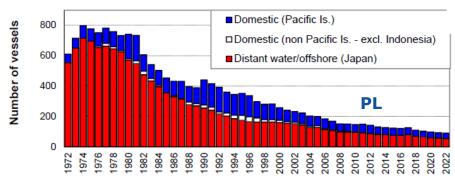
Stamatis VARSAMOS, DG MARE LDAC meeting, 17 October 2023

Preparation for WCPFC20

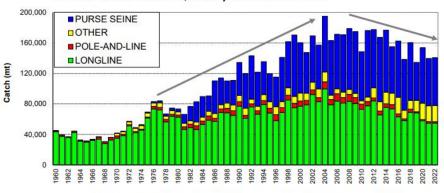
1. Key outcomes of SC19


- 2. Key outcomes of TCC19
- 3. Key outcomes of TTWS04
- 4. EU priorities for WCPFC20 and next steps
- 5. AOB


WCPFC (2022 estimates): Key figures

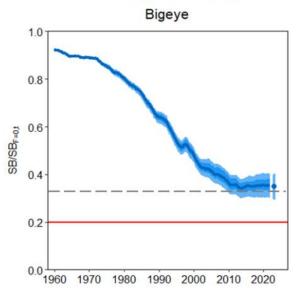

- * The provisional total tuna catch: 2,702,099 mt (slightly higher than the 2021 level and around 270,000 mt lower than the record catch in 2019 (2,973,586 mt).
- * 80% of the total Pacific Ocean tuna catch
- * 54% of the global tuna catch
- * Over 85% of the WCPFC tuna catch occurs in the EEZs of the coastal states
- * Total value of WCPFC tuna catch: \$5.95 billion, up by 17% from 2021.
 - PS: \$3.3 billion, increased by 21% from 2021 (55% of the total value of the tuna catch)
 - LL: \$1.5 billion, increased by 16% from 2021
 - PL: \$387 million, increased by 7% from 2021

Trends in numbers of f/v



Stock status recap - Bigeye

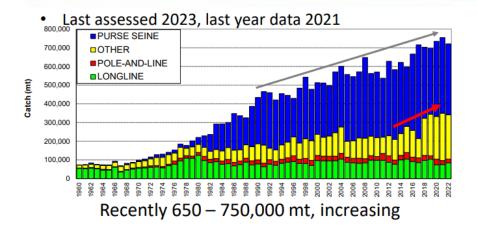
Last assessed 2023, last year data 2021

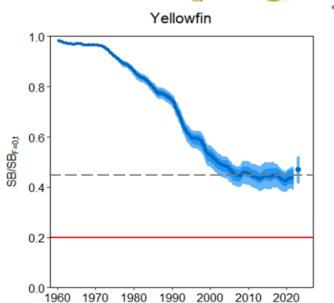


Recent 130 – 150,000 mt, decline since 2010

CMM 2021-01 para 13

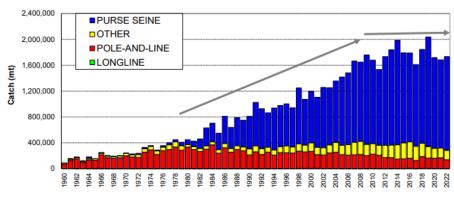
- Objective, average of 2012—2015 depletion = 0.34
- Recent median depletion (SBrecent/SBF=0) = 0.35
- 54 models

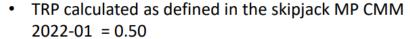


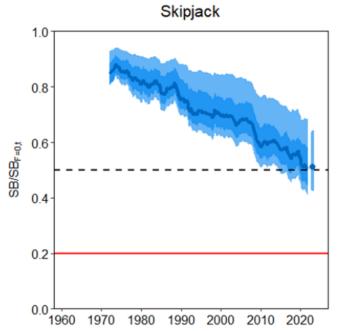


Stock status recap - Yellowfin

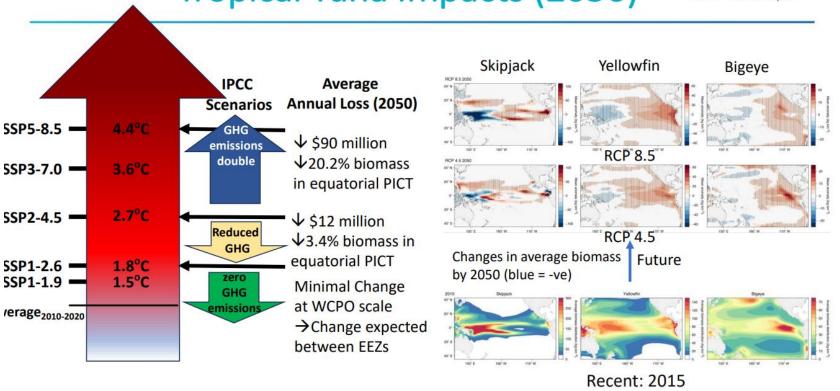
CMM 2021-01 para 13


- Objective, average of 2012—2015 depletion = 0.44
- Recent median depletion (SBrecent/SBF=0) = 0.47
- 54 models


Stock status recap - Skipjack


Last assessed 2022, last year data 2021

Recent 1.7 – 2 million mt, stable trend since 2010


- Recent median depletion (SBrecent/SBF=0) = 0.51
- 18 models

Tropical Tuna Impacts (2050)

Pathways to sustaining tuna-dependent Pacific Island economies during climate change. Nature Sustainability volume 4, pages900–910 (2021)

SC19 discussions on FADs

- FAD materials: limited information on materials during COVID to gauge transition to nonentangling FADs by 2024, additional data fields etc.
- Research on biodegradable FADs delayed due to COVID, work extended to 2025, support for additional work (funding from EU)
- Review timelines for transition to biodegradable FADs (FADSMO-IWG, TTC), consider IATTC transition plan, how to incentivise use of biodegradable FADs etc.
- FAD limits: no vessel reached to 350 monitored buoys/day limit, 90% < 130 buoys/day. FADMO-IWG and TTC to review limits and provide advice to TTMW4
- Option for better reporting of FAD activities numbers deployed, lost/abandoned and a process for abandoning/deactivation of FAD buoys

Questions?

Preparation for WCPFC20

- 1. Key outcomes of SC19
- 2. Key outcomes of TCC19
- 3. Key outcomes of TTWS04
- 4. EU priorities for WCPFC20 and next steps
- 5. AOB

Compliance Monitoring Scheme (CMS)

- Compliance Monitoring Report (CMR) review for fishing seasons 2021 and 2022: very good EU compliance record.
- Audit points (important changes for annual reporting and consequences in terms of compliance: emphasis on monitoring)
- CCFS (aggregated tables) (still not used for compliance status)
- CMS CMM expiry: FFA "unbalance PS vs LL" to be reflected in the CMS
- Still no observers participation in closed sessions of the CMR review

Sources of information and data that feed into the Compliance Cases File System (CCFS) of WCPFC

(CCFS: IT tool compiling alleged infringments by individual fishing vessels, as well as, information on investigation status and enforcement action as appropriate by the relevant Flag State)

All CCFS cases

Observer-initiated cases

Trip-Level Data
OAI POL
PAI

HSBI AIR
PORT VMS
OTH

OAI: Observer Obstruction Alleged Infringements

POL: Marine Pollution Infringements

PAI: ROP Pre-Notification of those data elements (other than alleged observer obstruction incidents and marine pollution incidents)

FAI: FAD Sets Alleged Infringements
SHK: Shark Catch Alleged Infringements
CWS: Cetacean and Whale Shark Interactions

AIR: Aerial Surveillance **HSBI:** HSBI outcomes

PORT: Port Inspection Outcomes

VMS: VMS-related query

OTH: Investigation through other means

Table 1: The breakdown in observer-initiated case number by year, with sub-total before including PAI and CWS cases

	Case type	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Observer Initiated Case	FAI	0	0	255	229	646	69	197	4	7	0	0
	OAI	0	0	151	64	38	77	80	29	6	0	0
	SHK	0	0	191	44	34	72	34	11	0	0	0
	POL	0	0	0	0	0	0	415	158	18	0	0
	Sub-total	0	0	597	337	718	218	726	202	31	0	0
	CWS	0	0	0	478	561	699	1,187	378	104	0	0
	PAI	0	0	0	911	677	1,248	1,408	491	71	0	0
	Sub-total	0	0	0	1,389	1,238	1,947	2,595	869	175	0	0

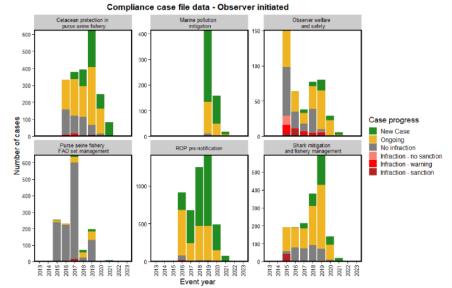


Figure 3: The number of observer-initiated cases in the compliance case file system by CMM theme type

Use of ROP data in the Compliance Monitoring Scheme (CMS) | WCPFC Meetings

Intersessional work

- Transhipment IWG
- RoP IWG
- EM & ER IWG
- Labour standards IWG
- CMS IWG (audit points, aggregated tables)
- FADs IWG
- Review of the CMM on minimum port state standards

Questions?

Preparation for WCPFC20

- 1. Key outcomes of SC19
- 2. Key outcomes of TCC19
- 3. Key outcomes of TTWS04
- 4. EU priorities for WCPFC20 and next steps
- 5. AOB

Key topics discussed

- SC outcomes and SPC additional analysis for the revision of the TTM
- Management objectives
- Allocation framework for HS PS effort
- Hard limit for HS PS effort
- Other proposed revisions to the TTM

Key topics discussed

SC outcomes and SPC additional analysis for the revision of the TTM

Results of SPC Analyses Requested by TTMW3 and Preliminary Evaluation of CMM 2021-01 | WCPFC Meetings

PS scalar

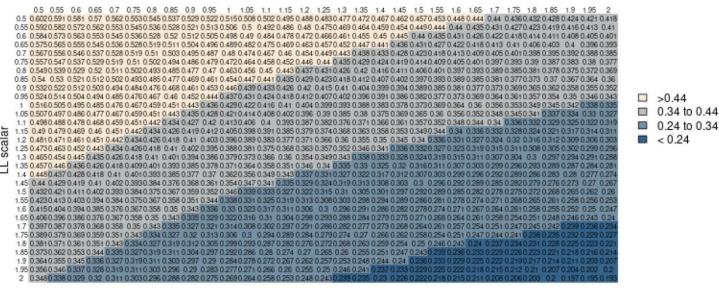


Figure 3. Bigeye equilibrium stock depletion levels (SB/SB_{F=0}) resulting under the different purse seine (across) and longline (down) scalars (relative to 2019-21 levels), under the assumption that 'long term' recruitment levels continue. Values indicate equilibrium depletion levels resulting under fishery conditions. Shading indicates depletions relative to average stock depletion levels over the period 2012-15 (34%SB_{F=0}), consistent with CMM 2021-01.

PS scalar

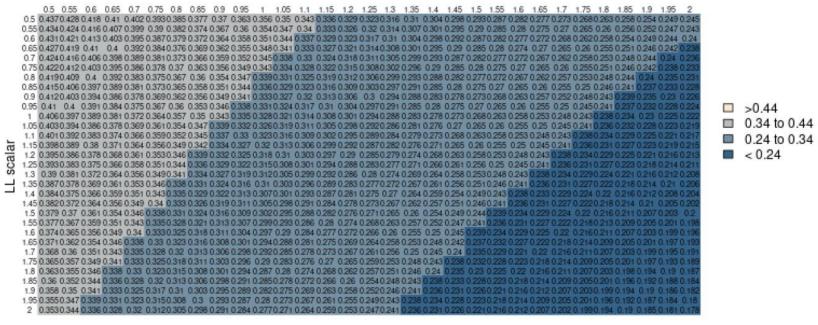


Figure 5. Yellowfin equilibrium stock depletion levels (SB/SB_{F=0}) resulting under the different purse seine (across) and longline (down) scalars (relative to 2019-21 levels), under the assumption that 'long term' recruitment levels continue. Values indicate equilibrium depletion levels resulting under fishery conditions. Shading indicates depletions relative to average stock depletion levels over the period 2012-15 (44%SB_{F=0}), consistent with CMM 2021-01.

Table 12. Implications of alternative levels of high seas purse seine effort on overall purse seine fishing levels and consequences for bigeye tuna (under the two hypotheses of future recruitment) and skipjack tuna depletion level, with 2012 EEZ effort levels.

HS	PS FAD set	Resulting E	SET SB/SB _{F=0}	PS (days) scalar relative to			Resulting
effort	scalar relative	Recent	Long-term	2019-	2016-	2012	SKJ
(days)	to 2019-2021	recruitment	recruitment	2021	2018		SB/SB _{F=0}
	average			average	average		
0	1.14	0.44	0.41	1.14	1.07	0.96	0.51
2,000	1.18	0.43	0.40	1.18	1.11	0.99	0.50
4,000	1.22	0.43	0.40	1.22	1.15	1.03	0.49
6,000	1.26	0.43	0.40	1.27	1.20	1.06	0.49
8,000	1.30	0.42	0.39	1.31	1.24	1.10	0.48
10,000	1.34	0.42	0.39	1.35	1.28	1.14	0.47

Table 13. Implications of alternative levels of high seas purse seine effort on overall purse seine fishing levels and consequences for bigeye tuna (under the two hypotheses of future recruitment) and skipjack tuna depletion levels, with a <u>2016-18</u> average baseline EEZ effort level.

HS	PS FAD set	Resulting E	BET SB/SB _{F=0}	PS (days)	Resulting		
effort	scalar relative	Recent	Long-term	2019-	2016-	2012	SKJ
(days)	to 2019-2021	recruitment	recruitment	2021	2018		$SB/SB_{F=0}$
	average			average	average		
0	0.93	0.47	0.44	0.91	0.86	0.76	0.55
2,000	0.96	0.47	0.44	0.95	0.90	0.80	0.54
4,000	1.00	0.46	0.43	0.99	0.94	0.84	0.53
6,000	1.04	0.45	0.42	1.04	0.98	0.87	0.53
8,000	1.08	0.45	0.42	1.08	1.02	0.91	0.52
10,000	1.12	0.45	0.41	1.12	1.06	0.95	0.51

Table 14. Implications of alternative levels of high seas purse seine effort on overall purse seine fishing levels and consequences for bigeye tuna (under the two hypotheses of future recruitment) and skipjack tuna depletion levels, with a <u>2018-21</u> average baseline EEZ effort level.

HS	PS FAD set	Resulting BET SB/SB _{F=0}		PS (days) scalar relative to			Resulting
effort	scalar relative	Recent	Long-term	2019-	2016-	2012	SKJ
(days)	to 2019-2021	recruitment	recruitment	2021	2018		SB/SB _{F=0}
	average			average	average		
0	0.86	0.48	0.45	0.85	0.80	0.71	0.57
2,000	0.90	0.47	0.44	0.89	0.84	0.75	0.56
4,000	0.94	0.47	0.44	0.93	0.88	0.78	0.55
6,000	0.98	0.46	0.43	0.98	0.92	0.82	0.54
8,000	1.02	0.46	0.43	1.02	0.96	0.86	0.53
10,000	1.06	0.45	0.42	1.06	1.00	0.89	0.52

Key topics discussed

Hard limit for HS PS effort and allocation framework

- CMM 2021-01 attnt A: approx. 2000 days
- Current levels of effort in recent years: approx. 7000 days
- Proposals on the table based on the interpretation of the MP

Questions:

- Number of fishing days in the WCPO HS?
- Is a PS olympic fishery in the HS manageable/desirable?

Key topics discussed

FADs Management

- Biodegradable FADs: IATTC vs PNA (4PIA); plastic ropes; definition
- FADs ownership (including marking etc)
- Number of FADs
- No deactivation of any FADs
- Reporting and monitoring (daily, raw data from satellite provider)
- Retrieval programs
- FADs closures (FFA reciprocal approach for any increase in LL catch)

Key topics discussed

- Tropical LL fishery
- Balance between fisheries
- Other commercial fisheries

Questions:

- State of play with the ongoing work on biodegradable FADs?
- Minimum number of FADs?
- Views on PNA proposed arrangements for « no deactivation », ownership, reporting, real time monitoring?

Questions?

Preparation for WCPFC20

- 1. Key outcomes of SC19
- 2. Key outcomes of TTWS4
- 3. Key outcomes of TCC19
- 4. EU priorities for WCPFC20 and next steps
- 5. AOB

Key EU priorities for WCPFC20

TTM

Management objectives
High Seas PS limit and its allocation
FADs management
Biodegradable FADs
Balance between fisheries and gears

- Other stocks: best available science; conservation and socioeconomic considerations
- CMS (ensuring CMM is prolonged, improving transparency of the CMR process, aggregated tables, audit points)
- Draft CMM on labour standards

Next steps

Discussion at CWP

Send to respective national authorities list of participants (present and online)

Registration online for the Annual meeting & logistics

Questions?